Probability theory - Class test 2

10 April, 2010, 10:00-12:00
Maximum marks is 50

Problem 1. [$\mathbf{5}$ marks $\mathbf{+ 5}$ marks] Let X_{n} be a sequence of random variables and let c_{n} denote a sequence of real numbers (non-random).
(1) Show that the sequence X_{n} is tight if and only if $\mathbf{P}\left(X_{n}>c_{n}\right) \rightarrow 0$ whenever $c_{n} \rightarrow \infty$.
(2) Show that the sequence X_{n} is uniformly integrable if and only if $\mathbf{E}\left[\left|X_{n}\right| \mathbf{1}_{\left|X_{n}\right|>c_{n}}\right] \rightarrow 0$ whenever $c_{n} \rightarrow \infty$.

Problem 2. [$\mathbf{2}$ marks $+\mathbf{2}$ marks $+\mathbf{3}$ marks $+\mathbf{3}$ marks] Let X_{1}, X_{2}, \ldots be independent random variables. $S_{n}=X_{1}+\ldots+X_{n}$ as usual. Which of the following events must necessarily have probability zero or one? Justify or give counterexample in each case. (a) $X_{n}>1$ i.o. (b) $S_{n}>1$ i.o. (c) $S_{n}-\left\lfloor S_{n}\right\rfloor>\frac{1}{2}$ i.o. (d) $\arcsin \left(S_{n}\right)$ converges. (For definiteness, let $\arcsin (x)$ take values in $[-\pi / 2, \pi / 2]$).

Problem 3. [10 marks] Let X_{n}, X be random variables on a common probability space.
(1) If $X_{n} \xrightarrow{P} X$, show that some subsequence $X_{n_{k}} \xrightarrow{\text { a.s }} X$.
(2) If every subsequence of X_{n} has a further subsequence that converges almost surely to X, show that $X_{n} \xrightarrow{P} X$.

Problem 4. [5 marks+5 marks] Let X_{1}, X_{2}, \ldots be i.i.d random variables with $\mathbf{E}\left[X_{1}\right]=0$.
(1) Assume that $\mathbf{E}\left[X_{1}^{2}\right]<\infty$ and show that $\frac{X_{1}+2 X_{2}+\ldots+n X_{n}}{1+2+\ldots+n} \xrightarrow{P} 0$.
(2) Assume that $\mathbf{E}\left[X_{1}^{4}\right]<\infty$ and show that $\frac{X_{1}+2 X_{2}+\ldots+n X_{n}}{1+2+\ldots+n} \xrightarrow{\text { a.s }} 0$.

Problem 5. [10 marks] Let X_{n} be i.i.d random variables. Assume that $\mathbf{E}\left[\log _{+}\left|X_{1}\right|\right]<\infty$, where $\log _{+} x:=$ $\max \{\log x, 0\}$. Show that the power series $f(z)=\sum_{n} X_{n} z^{n}$ has radius of convergence equal to 1 , a.s.

Problem 6. [10 marks] Let X_{1}, X_{2}, \ldots be i.i.d $N(0,1)$ random variables. Let a_{1}, a_{2}, \ldots be fixed (nonrandom) numbers. Show that $\sum_{n} a_{n} X_{n}$ converges a.s. if and only if $\sum_{n} a_{n}^{2}<\infty$.

